Object Detection in Computer Vision | AIML End-to-End Session 173
Ready to dive deep into the world of
Artificial Intelligence
Machine Learning (AIML)?
Uncover the power of Object Detection in Computer Vision in this in-depth AIML End-to-End Session 173. Learn how object detection identifies, locates, and classifies objects in images and videos. This session explores traditional methods like Haar cascades and HOG, as well as advanced deep learning techniques, including YOLO, Faster R-CNN, and SSD.
📌 What You Will Learn
✔️ The fundamentals of object detection in computer vision.
✔️ Traditional methods (Haar cascades, HOG) vs. modern deep learning approaches.
✔️ Implementing state-of-the-art models like YOLO, SSD, and Faster R-CNN.
✔️ Applications of object detection in real-world AI and ML projects.
📈 Why Watch This Video?
Understand how object detection works and its role in AI applications.
Master practical implementations in Python with libraries like OpenCV and TensorFlow.
Get insights into building scalable solutions for autonomous vehicles, surveillance, and more.
Enjoyed this session? Don’t forget to hit like, share your feedback in the comments, and subscribe for more AI/ML tutorials. Enable the bell icon to get notified about upcoming sessions. Share this video with your community to help others learn object detection in computer vision!
Object detection in computer vision
YOLO object detection tutorial
Faster R-CNN for object detection
SSD object detection explained
Deep learning for object detection
Object detection Python tutorial
Applications of object detection
AI and ML for computer vision
#ObjectDetection #ComputerVision #YOLO #FasterRCNN #SSD #DeepLearning #MachineLearning #AIML #ImageProcessing #AI #AutonomousVehicles #OpenCV
Seize this exclusive
opportunity to
accelerate your learning with Personalized
Live sessions tailored just for you!
Google Form Registration:
Secure your spot by filling out the Google Form below.
https://docs.google.com/forms/d/1dBgxP7ZRogh7jiIxKTbHmuo0DuQ2jjxlcTTt9rIgJMc/
@TwoMinutePapers
@3Blue1Brown
@sirajraval
@sentdex
@DeepMind
@lexfridman
@DataSchool
@TensorFlow
@PyTorch
@TheCodingTrain
@KrishNaik
@MachineLearningTV
@AIEngineering
@ArtificialIntelligence
@JeremyHoward
@TechWithTim
@GoogleAI
@AIandGames
@AIhub
@AIforAll
@HarvardInsights
@StanfordScholars
@MITOpenCourseWare
@UCBerkeleyOfficial
@OxfordAcademia
@CambridgeScholars
@YaleUniversity
@PrincetonPerspectives
@ColumbiaEducate
@CaltechDiscoveries
@UChicagoIntellect
@ImperialCollegeLondon
@ETHZurichKnowledge
@UniversityofTokyoOfficial
@UCLAInsights
@MichiganStateUniversity
@UniversityofToronto
@PekingUniversity
@NUSingapore
@ANUResearch
#AI
#MachineLearning
#ArtificialIntelligence
#DeepLearning
#DataScience
#NeuralNetworks
#AITutorial
#MachineLearningTutorial
#DeepLearningTutorial
#AIforBeginners
#AIEthics
#PythonMachineLearning
#AIApplications
#AIMLModels
#MachineLearningAlgorithms
#AIinBusiness
#DataScienceAI
#AIforStartups
#AIandAutomation
#AdvancedMachineLearning
#BigDataAI
#AIResearch
#AIinHealthcare
#SupervisedLearning
#UnsupervisedLearning
#ReinforcementLearning
#AIProjects
#AIInnovation
#AITrends
#AIDevelopment
#AITraining
#AIandRobotics
#AIandDataScience
#MLforDataScience
#ArtificialNeuralNetworks
#AIinMarketing
#AIinFinance
#AIandSecurity
#AIinEducation
#AIinManufacturing
#AIinAgriculture
#AIinRetail
#DataScienceProjects
#AIforBusiness
#DataVisualization
#AIMLCaseStudies
#DeepLearningModels
#PythonforAI
#MachineLearningEngineer
#AIinStartups
source